Minimum Restricted Diameter Spanning Trees

نویسندگان

  • Refael Hassin
  • Asaf Levin
چکیده

Let G = (V,E) be a requirements graph. Let d = (dij)i,j=1 be a length metric. For a tree T denote by dT (i, j) the distance between i and j in T (the length according to d of the unique i − j path in T ). The restricted diameter of T , DT , is the maximum distance in T between pair of vertices with requirement between them. The minimum restricted diameter spanning tree problem is to find a spanning tree T such that the minimum restricted diameter is minimized. We prove that the minimum restricted diameter spanning tree problem is NP hard and that unless P = NP there is no polynomial time algorithm with performance guarantee of less than 2. In the case that G contains isolated vertices and the length matrix is defined by distances over a tree we prove that there exist a tree over the non-isolated vertices such that its restricted diameter is at most 4 times the minimum restricted diameter and that this constant is at least 3 2 . We use this last result to present an O(log(n))-approximation algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Algorithm for the Minimum Spanning Trees Problem with Diameter Bounded Below

The minimum spanning trees problem is to find k edge-disjoint spanning trees in a given undirected weighted graph. It can be solved in polynomial time. In the k minimum spanning trees problem with diameter bounded below (k-MSTBB) there is an additional requirement: a diameter of every spanning tree must be not less than some predefined value d. The k-MSTBB is NP hard. We propose an asymptotical...

متن کامل

Geometric Minimum Diameter Minimum Cost Spanning Tree Problem

In this paper we consider bi-criteria geometric optimization problems, in particular, the minimum diameter minimum cost spanning tree problem and the minimum radius minimum cost spanning tree problem for a set of points in the plane. The former problem is to construct a minimum diameter spanning tree among all possible minimum cost spanning trees, while the latter is to construct a minimum radi...

متن کامل

A Permutation-Coded Evolutionary Algorithm for the Bounded-Diameter Minimum Spanning Tree Problem

The diameter of a tree is the largest number of edges on any path between two vertices in it. Given a weighted, connected, undirected graph G and a bound D ≥ 2, the bounded-diameter minimum spanning tree problem seeks a spanning tree on G of minimum weight whose diameter does not exceed D. An evolutionary algorithm for this NP-hard problem encodes candidate trees as permutations of their vertic...

متن کامل

Encoding Bounded-Diameter Spanning Trees with Permutations and with Random Keys

Permutations of vertices can represent constrained spanning trees for evolutionary search via a decoder based on Prim’s algorithm, and random keys can represent permutations. Though we might expect that random keys, with an additional level of indirection, would provide inferior performance compared with permutations, a genetic algorithm that encodes spanning trees with random keys is as effect...

متن کامل

Referências Bibliográficas

[1] Abdalla, A. M. Computing a diameter-constrained minimum spanning tree. Computational methods for the diameter restricted minimum weight spanning tree problem. create time-to-target plots.mon, G. MALLBA: A software library to design efficient optimisation algorithms .

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002